Overblog
Editer l'article Suivre ce blog Administration + Créer mon blog

Présentation

  • : Le blog de Victor
  • : Afin que tous le monde puisse profiter des connaissances
  • Contact

Profil

  • DEL REY Victor
  • Curieux de la vie
  • Curieux de la vie

MESSAGES

Pages et astuces
Des messages importants, des actuces.... Voici la dernière nouveauté de ce blog. N'hésitez pas à les lire....
  N'hésitez pas à cliquer sur les titres des articles pour voir la totalité du texte. Vous n'arrivez pas à le lire ? Faites CTRL + ou CTRL - pour augmenter ou diminuer la taille de la police....

"Une voix pour le peuple"
Je tente de créer une association pour changer la face du monde. On peut y arriver. N'hésitez pas à voir son but et à donner vos idées : Une voix pour le peuple

Recherche

Texte Libre

Archives

14 septembre 2010 2 14 /09 /septembre /2010 15:00

Formation

Les diamants sont constitués de carbone. Ils se forment lorsque ce dernier se trouve dans des conditions de température et de pression très élevées, entre 1 100 °C et 1 400 °C pour la température, et entre 4,5 GPa et 6 GPa pour la pression, ce qui correspond à des profondeurs d'environ 180 km dans le manteau terrestre. Les impuretés telles que l'azote, le soufre ou des métaux peuvent colorer le diamant.

On distingue deux grandes catégories de diamants en fonction de la nature de leur cortège d'inclusions, caractéristiques de l'environnement de cristallisation. Dans la plupart des cas, ces inclusions représentent une minéralogie de péridotite. Une seconde catégorie d'inclusions est caractéristique d'association éclogitiques.

Les diamants naturels sont composés de carbone qui se trouvait dans le manteau depuis la formation de la Terre, mais certains sont constitués de carbone provenant d'organismes, tels que des algues. C'est ce que révèle la composition isotopique du carbone. Ce carbone organique a été enfoui jusqu'au manteau terrestre par le mouvement des plaques tectoniques, dans les zones de subduction.

La nature minéralogique des inclusions, leur contenu en élément en trace et la composition isotopique (Carbone et Azote) des diamants eux-mêmes sont de précieux indices pour comprendre la genèse de ce minéral. Tout porte à croire que la croissance des diamants dans le manteau lithosphérique ne résulte pas d'une transformation directe à partir du graphite mais impliquerait plutôt l'entremise d'un fluide COH (fluide aqueux contenant du carbone dans une forme moléculaire non spécifiée : CH4, CO, CO2) ou d'un magma carbonaté (carbonatite). Le mode de cristallisation des diamants issus du manteau inférieur est bien moins contraint. Les caractéristiques en éléments en traces des inclusions de pérovskites calciques dans ces diamants suggèrent à certains auteurs une croissance associée à la présence de croûte océanique, dans une zone du manteau où elle pourrait effectivement s'accumuler.

Remontée en surface

Les diamants d'Afrique du Sud ont été remontés par des éruptions volcaniques très puissantes. Elles ont occasionné la formation de brèches volcaniques, constituées de débris de roches à l'origine très profondes. Les diamants sont ainsi retrouvés en inclusion dans ces roches appelées kimberlites.

L'érosion peut ensuite les transporter et les incorporer dans des sédiments alluviaux.

Gisements

La plupart des diamants sont extraits de la kimberlite présente dans les zones les plus anciennes de croûte continentale (au moins 1,5 milliard d'années).

Jusqu'au XVIe siècle, l'Inde et plus particulièrement la région de Golkonda (Golconde) était la seule zone de production de diamants au monde, avec la région de Bornéo. C'est en Inde qu'ont été extraits les plus célèbres diamants anciens. Puis les gisements du Brésil ont été découverts. Ils ont alimenté le marché occidental jusqu'à la fin du XIXe siècle, date de la découverte des gisements sud-africains.

Depuis cette date, la plupart des diamants viennent d'Afrique (62,1 % en 1999). Cette situation a été l'origine de plusieurs guerres comme celle du Sierra Leone, où les objectifs stratégiques étaient le contrôle des principaux gisements du pays pour financer le conflit.

Dans les parties les plus internes des chaînes de collision tel que les Alpes, l'Himalaya ou la chaîne Hercynienne, on trouve des roches continentales contenant des microdiamants. Ces diamants se forment au cours du métamorphisme dit d'« ultrahaute pression en contexte subduction-collision » : températures modérées de l'ordre de 800 à 900 °C et pression de l'ordre de 4 GPa. Les diamants obtenus sont de taille micrométrique et ne peuvent donc pas être concernés par l'exploitation minière. Cependant, ils offrent des objets uniques pour l'étude du comportement d'un système rocheux en profondeur.

Pays producteurs

En 2005, la production mondiale de diamants était de 173,5 millions de carats et les quatre principaux producteurs sont la Russie, le Botswana, l'Australie et la République démocratique du Congo qui produisent à eux quatre un peu plus de 73 % de la production mondiale.

Exploitation minière

Le processus d'extraction est très diversifié, puisqu'il dépend de la région dans laquelle le diamant est exploité. Mais, en général, les opérations se divisent en trois parties :

1. l'élimination des éléments stériles (terre et pierre qui couvrent le sable diamantifère) ;

2. l'extraction ;

3. le lavage.

Du fait du coût de l'exploitation des mines (dix tonnes de minerai permettent d'extraire seulement un carat de diamant), seules les entreprises investissent dans ces zones qui leur garantissent une production importante : généralement, des kilomètres carrés de terrain sont excavés pour obtenir une gemme de taille appréciable, d'où le coût des diamants.

Diamants de synthèse 

Depuis que l'on sait que le diamant n'est qu'une forme particulière du carbone, les physiciens et chimistes ont essayé de le synthétiser. La première synthèse artificielle du diamant eut lieu en 1953 à Stockholm par l'inventeur Baltzar von Platen et le jeune ingénieur civil Anders Kämpe travaillant pour la compagnie suédoise Asea.

En soumettant le carbone à une forte pression et à une haute température pendant plusieurs heures, il est possible de réaliser un diamant de synthèse. Mais en raison de leur petite taille, ces derniers ne sont utilisés que dans l'industrie.

Utilisation

Outre la joaillerie, le diamant est utilisé dans l'industrie en raison de ses propriétés, notamment de dureté.

Industrie

Tout d'abord, l'industrie utilise beaucoup le diamant en raison de sa dureté. Depuis les outils de coupe et d'usinage fondés sur les propriétés mécaniques du diamant, jusqu'aux enclumes à diamant permettant de recréer des pressions titanesques, les applications en sont multiples. Cette dureté intervient aussi dans la précision que l'on peut atteindre avec des outils en diamant. Notamment, les bistouris en diamant, permettent de créer des incisions ultraprécises (en ophtalmologie par exemple), car le moindre effleurement découpe la peau. N'étant par ailleurs pas réactif, il est biocompatible et ne génère pas de rejet ou de toxicité.

La chimie s'intéresse aussi fortement au diamant : il possède des propriétés qui le rendent tout à fait approprié pour des applications en électrochimie. D'une part, il est résistant aux acides et aux bases, ce qui permet une utilisation dans des milieux corrosifs. D'autre part, les électrodes de diamant plongées dans de l'eau pure ne subissent aucune réaction électrochimique ; elles sont donc très efficaces.

De nombreux dispositifs optiques utilisent la transparence du diamant, tandis que les dispositifs électroniques exploitent notamment ses propriétés thermiques.

En raison de sa faible conductivité électrique, le diamant peut être utilisé dans l'industrie des semi-conducteurs lorsqu'il est dopé avec des impuretés de bore ou de phosphore.

Les diamants sont actuellement à l'étude pour une utilisation comme détecteurs :

* de rayonnements dans des installations de recherche scientifique. Le CERN devait recevoir plusieurs mètres carrés de détecteurs en diamants synthétiques. La technologie n'ayant pas avancé assez vite, ils seront en silicium ;

* de rayonnements dans les installations de radiothérapie. Le carbone du diamant est le même que celui du corps (carbone 12 normal) et permet donc des mesures de dose plus proche de la dose réellement reçue par les tissus ;

* de produits divers, par les méthodes de type SAW (Surface Acoustic Waves), car le diamant est un très bon transducteur, grâce à sa rigidité. Il est cependant nécessaire de déposer (par des méthodes de CVD-Magnétron, notamment) un film mince de nitrure d'aluminium, qui est un piézoélectrique, au contraire du diamant. La forme du dépôt influe sur les produits détectables.

En revanche, et malgré leur stabilité considérable, les diamants ne peuvent pas servir dans un cœur de centrale nucléaire, car le bombardement est bien trop important et le matériau serait détruit.

Joaillerie

Les qualités de certains diamants (comme leur pureté, leur taille importante et leur couleur) font du diamant, la plus célèbre des pierres précieuses en joaillerie.

La beauté de son brillant est due au fait qu'il possède un haut indice de réfraction de la lumière et un grand pouvoir dispersif : en pénétrant, les rayons de lumière sont réfléchis à l'intérieur de la pierre à l'infini et la lumière blanche se disperse, retourne à l'intérieur transformée en un éventail de couleurs. Les diamants (comme les gouttes d'eau) fonctionnent comme des prismes en freinant, plus ou moins en fonction des longueurs d'onde (violette au maximum, rouge au minimum), de façon à ce que les couleurs soient dispersées sous forme d'arc-en-ciel.

Mais tous les diamants ne sont pas utilisés en bijouterie. Tout défaut peut leur ôter de la valeur et ils sont alors employés pour des applications industrielles. Généralement, ceci arrive avec ceux qui présentent des bulles internes ou des particules étrangères, ou s'ils sont de forme irrégulière ou pauvrement colorés.

Taille

La taille des diamants s'effectue surtout à Anvers (Belgique), à Tel-Aviv (Israël) et au Gujarat (Inde) par la communauté jaïn. En Thaïlande, ce sont les pierres précieuses (rubis et saphirs) qui sont taillées.

Le degré de la beauté de la dispersion (effet arc-en-ciel) du diamant dépend, en grande partie, de la taille et du poli de la pierre. Bien que naturellement les diamants aient leurs éclats propres, ceux-ci peuvent être améliorés et multipliés par la taille experte d'un Diamantaire.

Du fait de son extrême dureté, le diamant ne peut être usiné que par un autre diamant, c'est pourquoi la taille et le poli de la pierre en sont les éléments les plus importants.

Avant de le tailler, on examine la gemme pour déterminer ses plans de clivage. On trace ensuite sur elle une ligne qui marque le périmètre de ces plans. Sur celui-ci, on fait une petite cannelure avec une espèce de bois qui porte dans son extrémité un diamant. Par cette ouverture, on introduit une fine lame d'acier, on donne un coup sec et la pierre se divise en deux.

Il existe de nombreuses façons de tailler le diamant, mais la plus connue, celle qui met le mieux en valeur la beauté du diamant et qui est de ce fait la plus utilisée, est certainement la taille « brillant ». Cette technique perfectionnée permet de transformer les pierres brutes en véritables joyaux de lumière, en faisant apparaître 58 facettes (57 si l'on ne tient pas compte de la collette) : 33 sur la couronne et 24 sur la culasse, régulières et de tailles définies précisément, à la surface du diamant.

En effet, si les notions de pureté et de couleur paraissent familières, les proportions de taille le sont plus rarement. Pourtant, ces dernières sont un facteur de qualité essentiel. Elles conditionnent directement le rendu de brillance et le « feu » du dia­mant. À couleur identique, un dia­mant possédant de bonnes proportions sera bien plus éclatant qu'un diamant pur incorrectement taillé.

Depuis l'apparition de la taille Tolkovsky en (1919), les diamantaires n'ont cessé de chercher à optimiser le rendu de brillance du diamant. De toutes les tailles du diamant, c'est certainement la forme ronde brillant qui a été la plus étudiée et qui est la plus aboutie ; aujourd'hui, les proportions appliquées à cette taille résultent directement de la compréhension des lois optiques du matériau et de la maîtrise de la tech­nique de taille et du polissage.

Au Japon est très apprécié la taille flèche et cœurs, nommée ainsi à cause des formes des jeux de lumière.

Les apprentis tailleurs sont aujourd'hui très rares, la taille étant de plus en plus réalisée par des lasers à l'aide de systèmes informatiques.

Partager cet article
Repost0

commentaires